
Opportunities and Challenges in Anaerobic Digestion: Maryland and the NE Experience

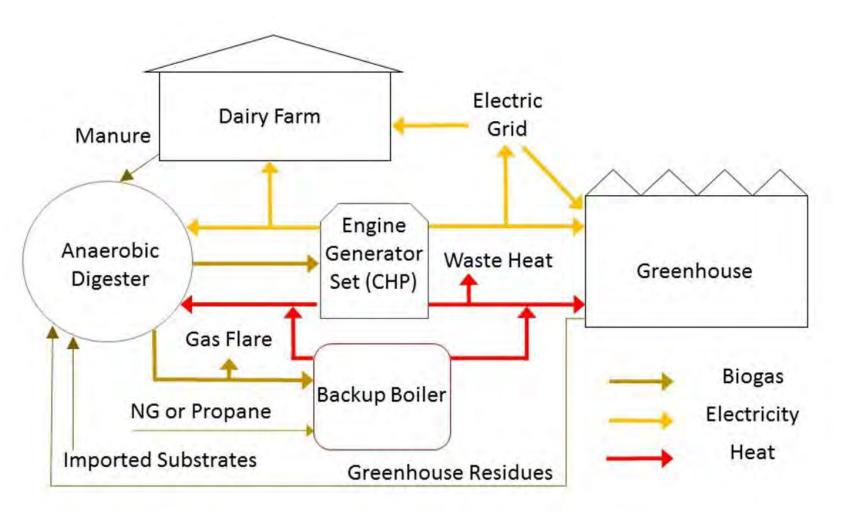
Curt Gooch

Chemisorption: Dairy Environmental Systems Engineer amine + co Team Leader - Dairy Environmental System Program Source: Carbotech, 2008 Cornell University

www.manuremanagement.cornell.edu

AD: Heat Production

- Some (few) farms use recovered heat in a beneficial manner...
- Waste heat usage represents a valuable opportunity for farms


- As much as 75% of the produced heat is wasted
- Excess heat is typically dumped to the ambient using large radiators

Coupling Dairy Manure Anaerobic Digesters with Commercial Greenhouses: An Assessment of Technical and Economic Feasibility

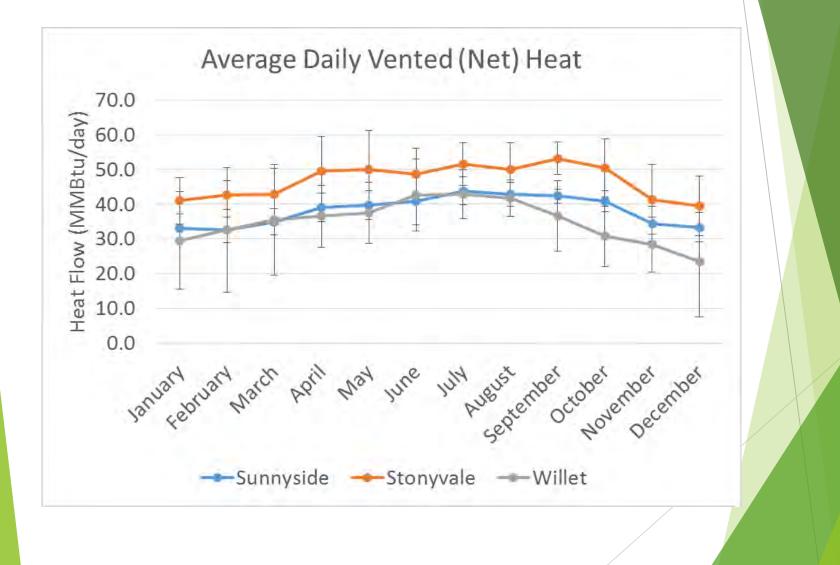
Phase I - Project Goals:

Develop user friendly computer programs to:

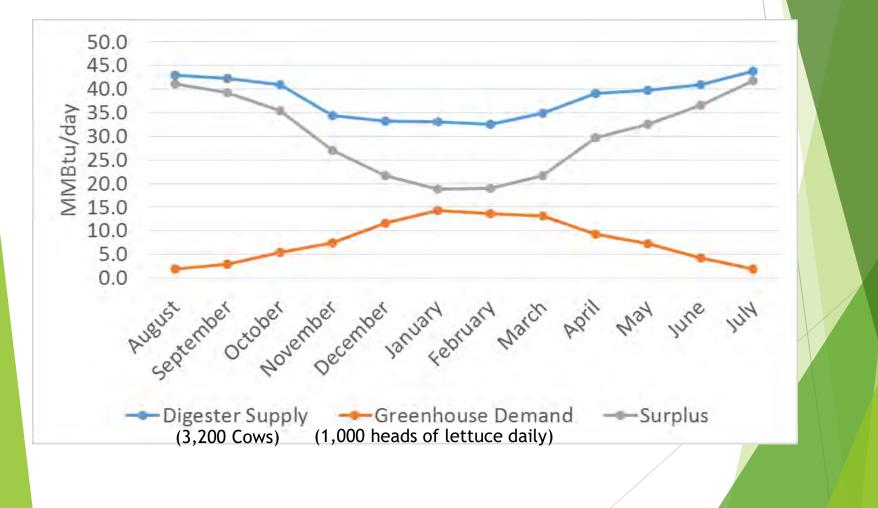
- Predict the surplus heat and electricity available from digesters of user specified size, design and operational characteristics. Cornell Anaerobic Digester Simulation Tool
- Predict the required heat and electricity for a greenhouse of user specified size, design and operational characteristics. Cornell Greenhouse Simulation Tool
- Use the output from the AD computer program, and determine the size of greenhouse that could be supported by the specified digester, or the portion of the energy usage of a specified greenhouse that could be digester supported.

Cornell AD/GH Synergy Simulation Tool

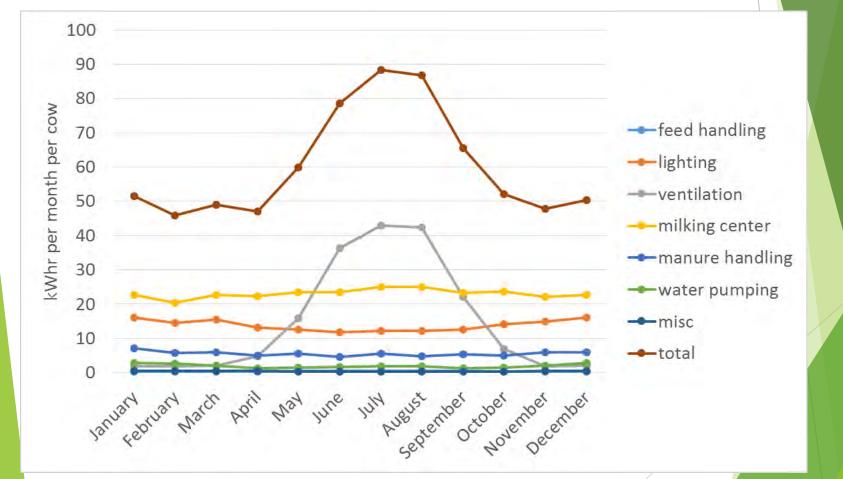
Monitoring Surplus Heat Of Digesters



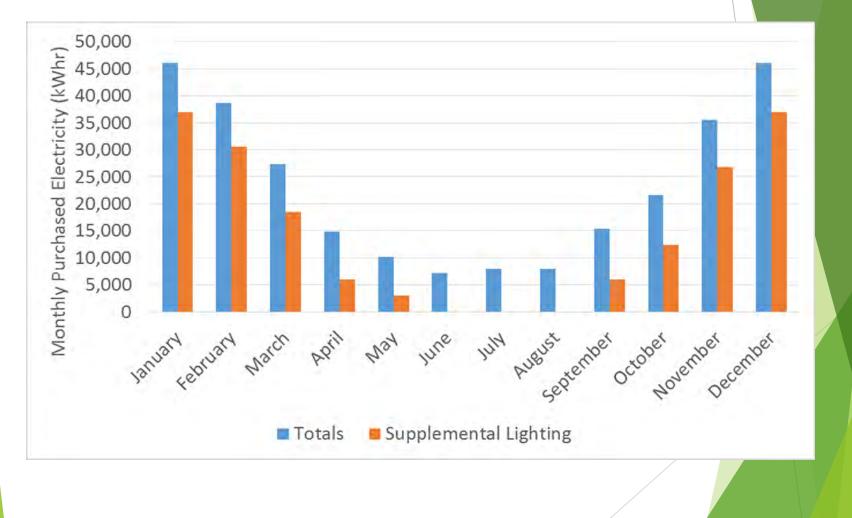
Thanks to:


Dairies

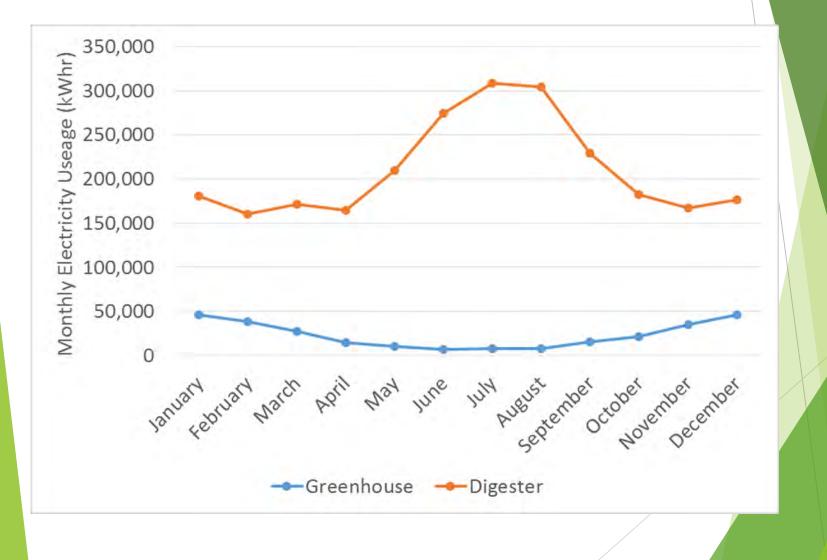
- Synergy Dairy (Covington, NY)
- Stonyvale Farm (Exeter, ME)
- Sunnyside Dairy (Venice, NY)
- Willet Dairy (Locke, NY)
- Commercial Greenhouses
 - Challenge Industries (Ithaca, NY)
 - Durham Foods (Port Perry, ON)


Anaerobic Digester Surplus Heat

Out of Sync Heat Production and Consumption



New York Freestall Barn Dairy Monthly Electricity Use



Source: Adapted from Peterson, Northeast Agriculture Technology Corporation 2014

NY Greenhouse Yearly Electricity Usage

Complementary Electricity Use

Digester Simulation Computer Program

a			WIATLAD NZU ISU			
			DigDigester	- 🗆 ×		- 🗆 ×
File	Options Input Simulate Outp	ut Help	Digester Characteristic	S Help		<u>د</u>
	Project Title: Author:	none	Influent	ncomplete		
	- Input-		Equipment	•	DigStructure	- 🗆 🗙
	Project Information	Status Incomplete	Operation	Structure Cha	aracteristics	Help
	Climate	Incomplete		Digester Shape and	d Position	incomplete
	Digester	Incomplete		Dimensions		
	Farm	Incomplete		- Insulation-		
	Simulate			◯ Specify	Estimate ame top to bottom?	incomplete
				Save	Save and Close	Close

Greenhouse Simulation Computer Program

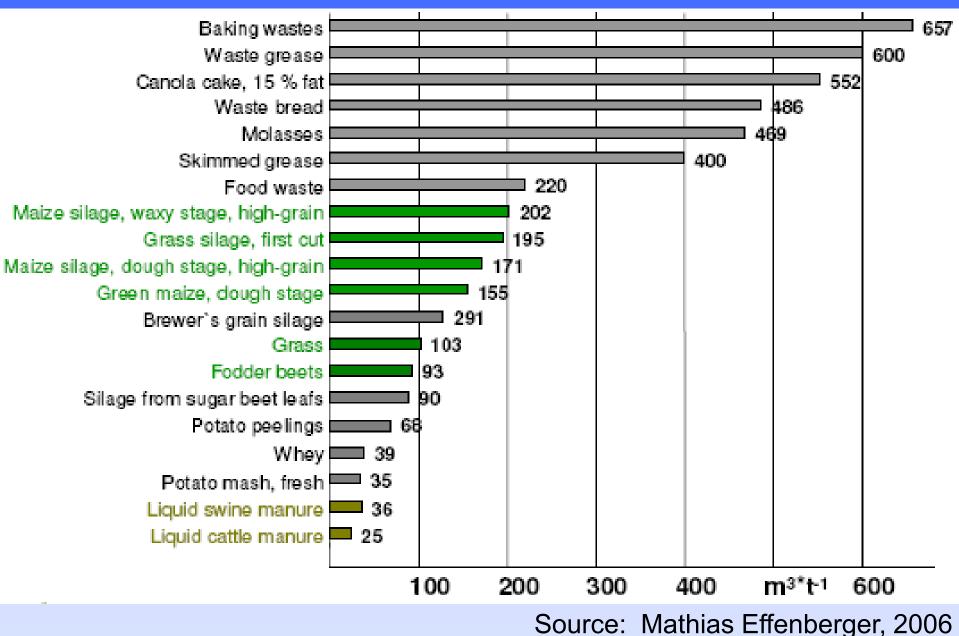
4	EnvironmentalControlSy	stems – 🗆 × 🛛 – 🗆 ×
File Options Input Simulate Output Help		Help
Project Title: none Author: none	Heating	
	Cooling/Venting	ECSLightControl – 🗆 🗙
Input-Status Project Information Incomplete	Light/Shade/CO2 Incc	Light control method Help Supplemental V Edit Settings
Climate Incomplete		Number of fixtures 20 Fixture Size (W) 600
Structure Incomplete		Fixture efficiency (%) 95 PPF from Supplemental Light 220 umols / m2 / sec PAR
Crop Incomplete		Shade control method Fixed Interval Edit Settings
		Shade Transmissivity 0.5
		CO2 control method None (natural)
		Save Save and Close Cancel/Close

Farm Size	Co Digestion ²	Greenhouse Size	Value of Heat ³	Value of Electricity ⁴	Benefit⁵
(LCE ¹)		(ft²)	(\$/year)	(\$/year)	(\$/year)
	none	580	\$9,975	\$1,650	\$11,625
	10% whey	720	\$11,548	\$2,100	\$13,648
500	25% whey	1,325	\$17,035	\$3,900	\$20,935
	5% FOG	1,125	\$15,107	\$3,300	\$18,407
	10% FOG	1,500	\$18,874	\$4,350	\$23,224
	none	3,250	\$23,170	\$9,600	\$32,770
	10% whey	4,000	\$26,500	\$11,700	\$38,200
1,000	25% whey	6,750	\$31,865	\$19,800	\$51,665
	5% FOG	6,000	\$29,479	\$17,550	\$47,029
	10% FOG	7,500	\$34,316	\$21,900	\$56,216
	none	7,875	\$35,344	\$22,950	\$58,294
	10% whey	9,375	\$39,613	\$27,450	\$67,063
1,500	25% whey	15,500	\$49,345	\$45,300	\$94,645
	5% FOG	13,000	\$43,712	\$37,950	\$81,662
	10% FOG	16,500	\$51,725	\$48,300	\$100,025
	none	14,500	\$46,967	\$42,450	\$89,417
	10% whey	16,500	\$51,725	\$48,300	\$100,025
2,000	25% whey	20,000	\$60,224	\$58,350	\$118,574
	5% FOG	19,000	\$57,424	\$55,500	\$112,924
	10% FOG	21,000	\$62,879	\$61,350	\$124,229
	none	21,000	\$62,879	\$61,350	\$124,229
	10% whey	28,125	\$69,628	\$82,200	\$151,828
3,000	25% whey	43,750	\$84,545	\$127,800	\$212,345
	5% FOG	33,750	\$73,909	\$98,700	\$172,609
	10% FOG	50,000	\$89 <i>,</i> 050	\$146,100	\$235,150

Food Hub Operations Model

Transport seedlings to finish their finish their growth at smaller, distributed operations, located to take advantage of inexpensive heat and power.

Dairy Manure Derived Biogas: Raw Composition


- Methane (CH₄); 55 to 68 percent \rightarrow 60%
- Carbon Dioxide (CO₂); 32 to 45 percent \rightarrow 40%
- Hydrogen Sulfide (H₂S); 1,500 5,000 ppm
- Ammonia (NH₃); 0 300 ppm
- Water Vapor (H₂0); saturated gas: ~4%

Biogas Yields for Sizing Clean-up System

- Cow manure only anaerobic digester systems: 60 to 100 ft³ biogas per lactating cow equivalent on a volatile solids basis (LCE_{vs basis})
- Co-digestion anaerobic digester systems: 2 – 3x cow manure only systems on a LCE_{VS basis} or more
- For existing systems, use gas meter data to size

Potential Biogas Yields

Landfill Biogas: Raw Composition

Dairy Manure Derived Biogas Components plus various other contaminates such as:

Siloxanes
CFCs
S-compounds
Oxygen
Nitrogen

Important Considerations

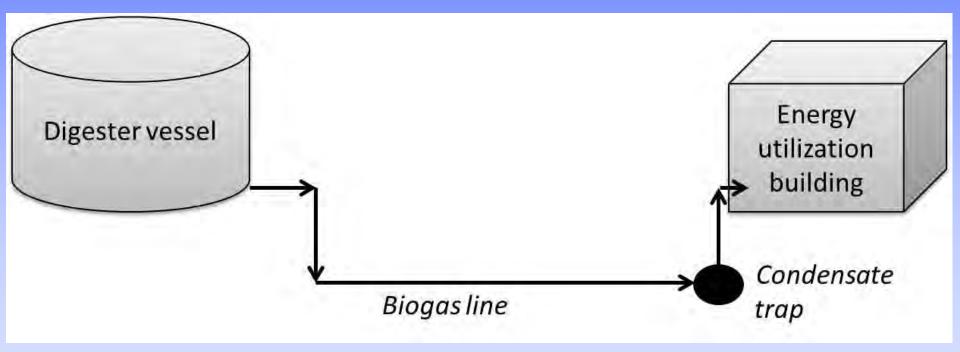
- End use of biogas/rng and its requirements
- Requirements can drive clean up system method selected
- Clean up systems require energy: electricity and sometimes heat
- CAPEX and OPEX

Important Considerations

- Sometimes no cleanup is cheapest option
- Some methods need redundancy
- Most appropriate solution may include multiple methods arranged in series

Biogas clean-up/upgrading

-Level 1 of 3: Moisture removal


-Level 2 of 3: Hydrogen sulfide removal

-Level 3 of 3: Carbon dioxide removal

Biogas Cleanup – Level 1 of 3 Moisture removal for local use/pipeline transport

Level 1 - Moisture Removal: Passive Condensation

Level 1 - Moisture Removal: *Refrigeration*

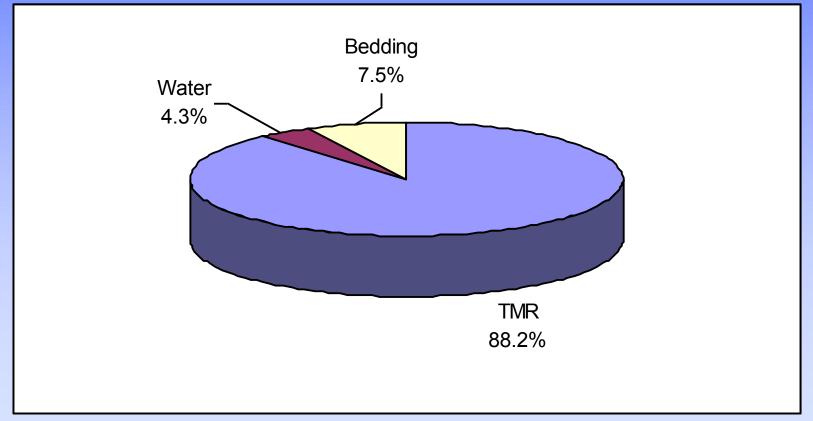
- Heat exchangers used to cool biogas to desired dew point
- Biogas pressurized to increase further dryness

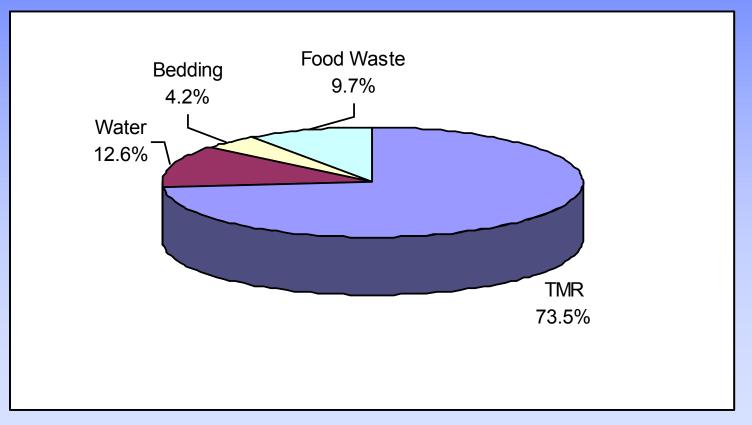
 Condensate removed from system and disposed of as wastewater

Level 1 - Moisture Removal: Adsorption

- Adsorption agents used to capture moisture
- Silica gel or aluminum oxide used when biogas used for vehicle fuel
- Two vessels are used for continuous treatment

Biogas Cleanup – Level 2 of 3


H₂S and moisture (sometimes) reduction for on-site combustion


Level 2 - Hydrogen Sulfide

Sources of Sulfur on Farms <u>Not</u> Importing Food Waste for Co-digestion

Level 2 - Hydrogen Sulfide

Sources of Sulfur on Farms Importing Food Waste for Co-digestion

Source: Ludington and Weeks, 2009

Level 2 - Hydrogen Sulfide Max. Concentration for Various Biogas End Uses

Designated End Use	Max. [H ₂ S], ppm	
Boiler	1,000	
Engine-Generator	500	
Vehicle Fuel	23	
Pipeline Injection	4	
Fuel Cell	1	

Level 2 - Biogas Hydrogen Sulfide Reduction Options

Digester Influent Additives

- Iron Chloride Dosing
- Ferric Hydroxide Dosing

• Biogas: Physical/Chemical

- Iron Sponge
- Activated Carbon

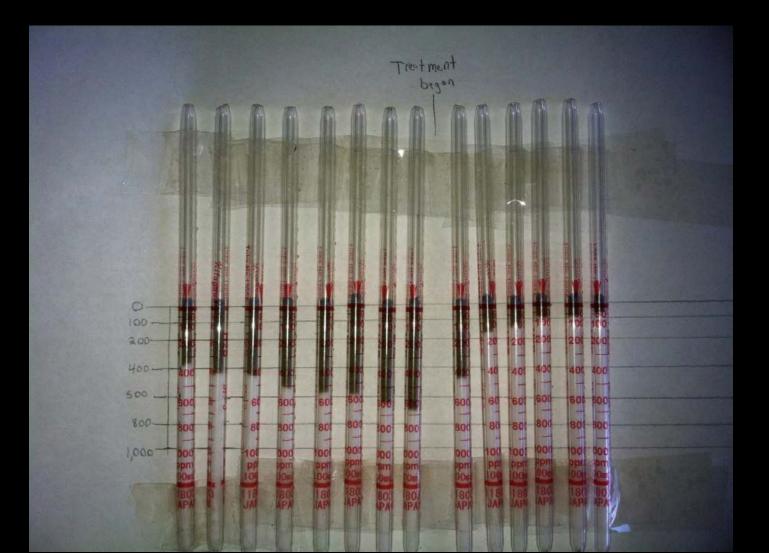
• Biogas: Microbial

- Biological Fixation

Digester Influent Additive: <u>Iron Chloride (FeCl₂)</u>

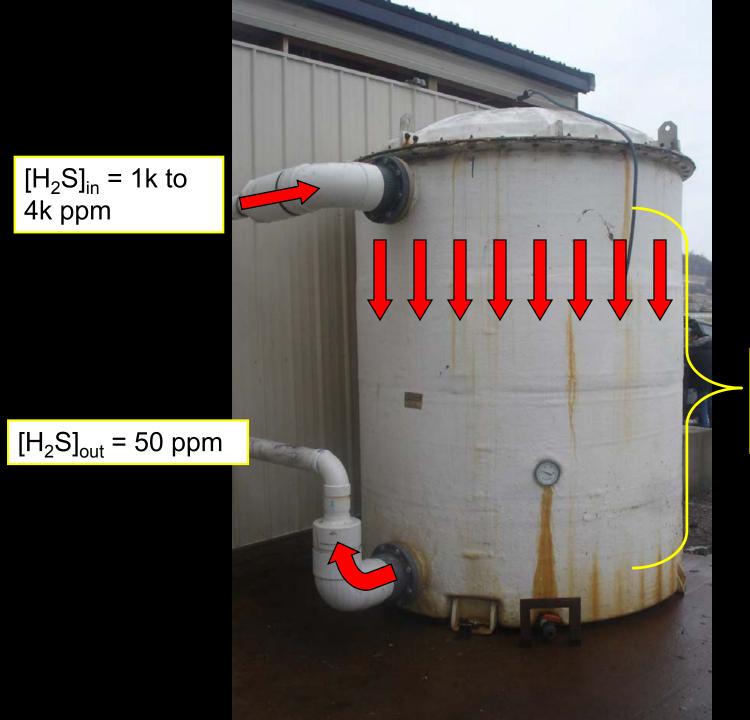
- Liquid form Injected directly into digester by an automated dosing unit
- Good for high initial [H₂S] as a first stage of a multistage H₂S removal process
- Comparatively low CAPEX
- Comparatively high OPEX due to chemical cost

Digester Influent Additive: <u>Ferric Hydroxide - Fe (OH)</u>3


- Granular, powder, and liquid forms
- Application rate nonlinear, depends on [H₂S] and digester size
- Use started (2013) by NE farm with very good results (3.5 bags/day)
- Google Search reveals price \$600 \$1,500/tonne

Ferric Hydroxide NE Dairy Farm AD

Ferric Hydroxide - Results


Chemical Removal of H₂S: <u>Iron Sponge</u>

- Chemical reaction bonds sulfur to iron oxide
- Reaction occurs at ambient temperatures
- Must be in alkaline conditions, pH > 7.5 w/ 8-10 preferred; caustic soda added as needed
- Temperature < 110F

Chemical Removal of H₂S: *Iron Sponge* (con't)

- Each pound of Fe_20_3 can remove 0.56 lbs. sulfide
- Iron oxide is impregnate in wood bark: 15
 Ibs. Fe₂0₃ per bushel of bark (1 bushel in-place = 1 cu. ft.)

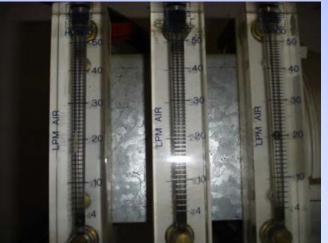
 $3H_2S + Fe_2O_3 + H_2O \rightarrow 4H_2O + Fe_2O_3$

<u>∆p:</u> 2 - 3" wc initially 8 - 10" over time

Iron Sponge – MSU AD System

Two Tank System for Biogas Clean-up

Iron Sponge Scrubbers – Janesville WWTP, Janesville, WI



Chemical Removal of H₂S: Activated Carbon

- Activated carbon impregnated with potassium iodine or sulfuric acid
- Air injected into biogas to promote carbon adsorption of H_2S
- Carbon also regenerated with injected air
- $H_2S \rightarrow$ elemental S

Microbial Removal of Biogas H₂S Biological Fixation

- 2 to 4% air injected into biogas
- Operative microbes grow on surfaces
- Reductions to 60 200 ppm
- Reduces NH₃ as well
- Final [0₂] 0.5 to 1.8% by volume with also Some N due to the injection process

Microbial Removal of H₂S Biological Fixation

 $H_2S + 0.5 O_2 \rightarrow S + H_2O$ (Partial Oxidation)

 $H_2S + 2O_2 + 2OH \rightarrow SO_4 + 2H_2O$ (Total Oxidation)

Thiobacillus sp.

Microbial Removal of Biogas H₂S Biological Fixation

Two Possible Locations:

Digester Biogas Head Space

Separate Vessel

Microbiological Scrubber – Synergy Farm, Covington, NY

Total Annual Cost or Benefit

ΣTotal Annual Costs – (ΣAnnual Cost Savings + ΣAnnual Revenues)

If a <u>positive No</u>., then the system is an economic <u>cost</u> to the farm

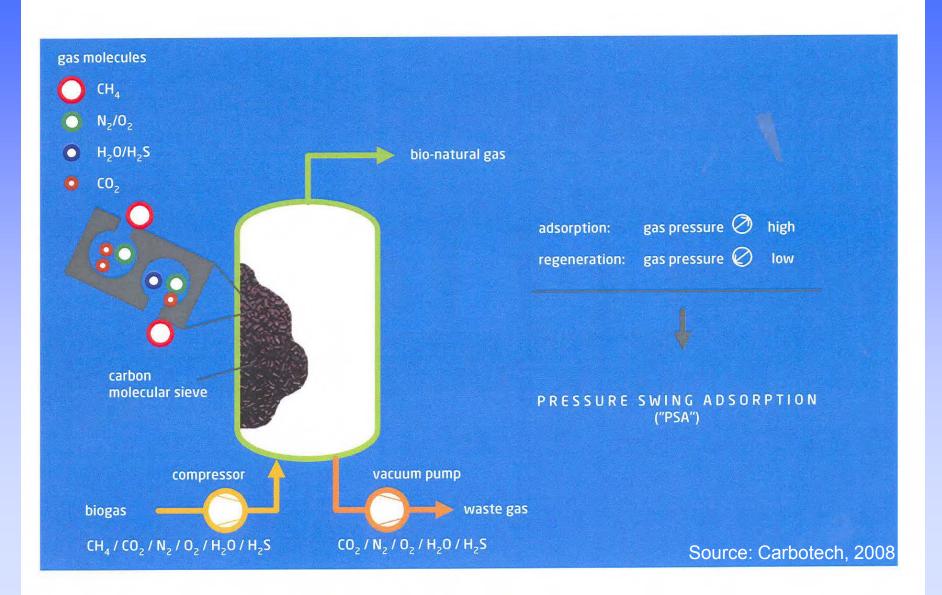
If a <u>negative No</u>., then the system is *likely* an economic <u>benefit</u> to the farm

Biogas Cleanup – Level 3 of 3

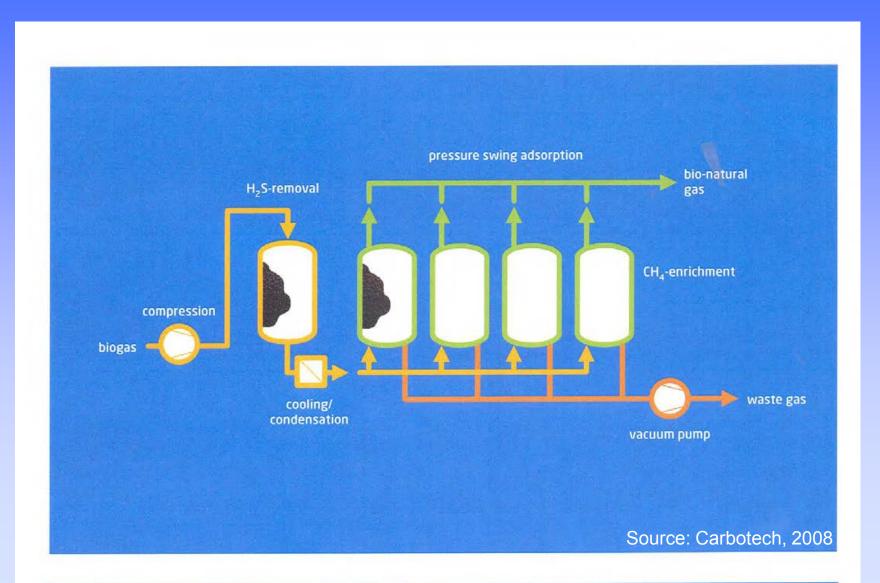
H₂S, H₂O, CO₂, & NH₃ removal for pipeline injection or transportation fuel \rightarrow "biomethane" or often called "Renewable Natural Gas (RNG)"

Level 3 - Carbon Dioxide (CO₂) Removal – Options

1. Regenerative Water Wash


- 2. Regenerative Amine Wash (Amine)
- 3. Pressure Swing Adsorption (PSA)
- 4. Membrane Separation
- 5. Cryogenic Distillation

Physical Removal of CO₂: Pressure Swing Adsorption (PSA)


 CO₂ is absorbed by means of adsorption materials (molecular sieve)

 This system is used extensively in Germany and Sweeden

Biogas Clean Up - PSA

Biogas Clean Up - PSA

No process water

No wastewater treatment

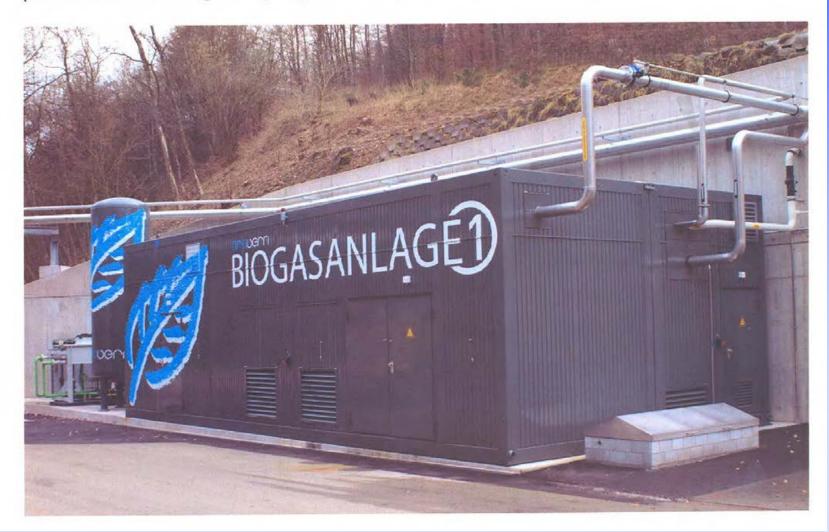
No chemicals

Removal of H₂O to dew point -90°C

N₂ and O₂ removal

 Hydrocarbon, VOC, and Silicon Compounds removed

• Flexible system, containerized


• Efficient; 97% CH₄ capture

• Off-the-self components

• Very low maintenance

Biogas Clean Up - PSA

(concinientation sewage sign y or Barne waste)

Biomethane Energy Content

100% CH₄ - LHV = 896 Btu's/scf - HHV = 960 Btu's/scf

Wobbe Index:

- Used to compare the combustion energy output of different composition fuel gases in an appliance
- An indicator of the interchangeability of gaseous fuels

WI = higher heating value/(square root of gas SG)

Average Cost of Biogas Upgrading

Vendor	Biogas Flow (cfm)	Year	Cost (\$/MMBtu)	Technology
Metener	118	2006	6.22	Water Wash
Molecular Gate	142	2008	7.08	PSA
Carbotech	148	2008	10.73	PSA
QuestAir 1 Stage	142	2008	6.73	RPSA
QuestAir 2 Stages	142	2008	7.54	RPSA

Biogas as Liquid Fuel Replacement

Biogas Thermal Energy Value and Diesel Volume Equivalents

Farm	CH ₄	CH₄	Annual Heating	Diesel Eq.
T ann	(%)	(lbs./day)	Value (mmBtu/yr.)	(gal/yr.)
AA Dairy	57	900	7,068,663,000	50,781
New Hope View	58	1,837	14,427,926,590	103,649
Ridge Line	65	3,663	28,769,458,410	206,677
Noblehurst Cell 1 and 2	56	1,069	8,396,000,830	60,316
Patterson	56	3,894	30,583,748,580	219,711
Sunny Knoll	64	1,691	13,281,232,370	95,411

2007 – Dairy Manure Derived Biogas Injection to Natural Gas Pipelines in US

- Few locations attempting this; ID, WI
- Natural gas companies (NGC) very interested
- 17 NGC project investors funded a project in 2007 to develop a US <u>guideline</u> for <u>dairy-based</u> biogas injection

US Guideline for Dairy-Based **Biogas Injection (continued) Biogas testing for:** ✓ Basic composition \checkmark Dissolved metals ✓ Dust \checkmark Microbes – MIC ✓ Others

US Guideline for Dairy-Based **Biogas Injection (continued) Biogas testing for:** ✓ Basic composition \checkmark Dissolved metals ✓ Dust \checkmark Microbes – MIC ✓ Others Guideline Completed 8/2008

2005-2010 Cayuga Renewable Energy, LLC AD/Pipeline/End Use Project

befahrbare Waage
 befahrbare Siloplatten
 Güllevorgrube
 Vorratscontainer für Fermenter
 Fermenter
 Nachgärbehälter
 Blockheizkraftwerk-Container
 Holzhackschnitzelhalle

6

 Container mit Holzhackschnitzelofen und Wärmeverteilung
 Ölkesselcontainer

5

- 11 Wärmepufferspeicher für das Nahwärmenetz
- 12 Transformatorhaus für Stromeinspeisung
- 13 Feuerlöschteich
- 14 Überlaufbecken
- 15 Warte
- 16 Nahwärmenetz in der Straße nach Jühnde

Luftbild der Bioenergieanlage in Jühnde

13

Why are you here? Perhaps...

- For networking opportunities
- ✓ To share knowledge
- ✓ Looking for new opportunities
- ✓ Representing products/services for sale
- ✓ To learn
- ✓ Seeking a business opportunity

